主页
产品
应用案例
新闻动态
购买渠道
下载与支持
关于我们
生态合作
联系我们
主页
产品
新闻动态
购买渠道
下载与支持
关于我们
加入我们
联系我们
  • 中文|
  • Eng
  • 回环检测是什么? 解读SLAM算法中回环检测的意义

     

    隨著路徑的不斷延伸,機器人在建圖過程中會存在一些累計誤差,除了利用局部優(yōu)化、全局優(yōu)化等來調(diào)整之外,還可以利用回環(huán)檢測來優(yōu)化位姿。

    回環(huán)檢測是什么?

    回環(huán)檢測,又稱閉環(huán)檢測,是指機器人識別曾到達某場景,使得地圖閉環(huán)的能力。說的簡單點,就是機器人在左轉(zhuǎn)一下,右轉(zhuǎn)一下建圖的時候能意識到某個地方是“我”曾經(jīng)來過的,然后把此刻生成的地圖與剛剛生成的地圖做匹配。

     什么是回環(huán)檢測

    回環(huán)檢測成功

    回環(huán)檢測之所以能成為一個難點,是因為:如果回環(huán)檢測成功,可以顯著地減小累積誤差,幫助機器人更精準、快速的進行避障導航工作。而錯誤的檢測結(jié)果可能使地圖變得很糟糕。因此,回環(huán)檢測在大面積、大場景地圖構(gòu)建上是非常有必要的 。

     回環(huán)檢測是什么

    回環(huán)檢測失敗

    機器人回環(huán)檢測能力如何提升?

    那么,怎么才能讓機器人的回環(huán)檢測能力得到一個質(zhì)的提升呢?首先要有一個算法上的優(yōu)化。

    1、基于圖優(yōu)化的SLAM算法

    基于圖優(yōu)化的SLAM 3.0 算是提升機器人回環(huán)檢測能力的一大突破。

    SLAM 3.0采用圖優(yōu)化的方式進行建圖,進行了圖片集成與優(yōu)化處理,當機器人運動到已經(jīng)探索過的原環(huán)境時, SLAM 3.0可依賴內(nèi)部的拓撲圖進行主動式的閉環(huán)檢測。當發(fā)現(xiàn)了新的閉環(huán)信息后,SLAM 3.0使用Bundle Adjuestment(BA)等算法對原先的位姿拓撲地圖進行修正(即進行圖優(yōu)化),從而能有效的進行閉環(huán)后地圖的修正,實現(xiàn)更加可靠的環(huán)境建圖。

     SLAM30.閉環(huán)

    SLAM 3.0閉環(huán)檢測

    SLAM 3.0環(huán)路閉合邏輯:先小閉環(huán),后大閉環(huán) ;選擇特征豐富的點作為閉環(huán)點;多走重合之路,完善閉環(huán)細節(jié)。即使在超大場景下建圖,也不慌。

     超大場景下建圖完整閉合過程

    超大場景下建圖完整閉合過程

    2、詞袋模型

    除了SLAM算法的升級和優(yōu)化之外,現(xiàn)在還有很多系統(tǒng)采用成熟的詞袋模型方法來幫助機器人完成閉環(huán),說的簡單點就是把幀與幀之間進行特征比配。

    從每幅圖像中提取特征點和特征描述,特征描述一般是一個多維向量,因此可以計算兩個特征描述之間的距離;

    將這些特征描述進行聚類(比如k-means),類別的個數(shù)就是詞典的單詞數(shù),比如1000;也可以用Beyes、SVM等;

    將這些詞典組織成樹的形式,方便搜索。

    詞袋模型
    利用這個樹,就可以將時間復雜度降低到對數(shù)級別,大大加速了特征匹配。

    3、相似度計算

    這種做法是從外觀上根據(jù)兩幅圖像的相似性確定回環(huán)檢測關(guān)系,那么,如何確定兩個地圖之間的相關(guān)性呢?

    比如對于圖像A和圖像B,我們要計算它們之間的相似性評分:s(A,B)。如果單單用兩幅圖像相減然后取范數(shù),即為: s(A,B)=||A−B||s(A,B)=||A−B||。但是由于一幅圖像在不同角度或者不同光線下其結(jié)果會相差很多,所以不使用這個函數(shù)。而是使用相似度計算公式。

    這里,我們提供一種方法叫TF-IDF。

    TF的意思是:某特征在一幅圖像中經(jīng)常出現(xiàn),它的區(qū)分度就越高。另一方面,IDF的思想是,某特征在字典中出現(xiàn)的頻率越低,則分類圖像時的區(qū)分度越高。

    對于IDF部分,假設(shè)所有特征數(shù)量為n,某個節(jié)點的Wi所含的數(shù)量特征為Ni,那么該單詞的IDF為:

    回環(huán)檢測是什么意思

    TF是指某個特征在單副圖像中出現(xiàn)的頻率。假設(shè)圖像A中單詞Wi出現(xiàn)了N次,而一共出現(xiàn)的單詞次數(shù)是n,那么TF為: 

    回環(huán)檢測是什么意思

    于是Wi的權(quán)重等于TF乘IDF之積,即 

    回環(huán)檢測是什么意思

    考慮權(quán)重以后,對于某副圖像,我們可以得到許多個單詞,得到BOW:

    回環(huán)檢測是什么意思

    (A表示某幅地圖)

    如何計算倆副圖像相似度,這里使用了L1范數(shù)形式:

    回環(huán)檢測是什么意思

    4、深度學習及其他

    除了上面的幾種方式之外,回環(huán)檢測也可以建成一個模型識別問題,利用深度學習的方法幫助機器人完成回環(huán)檢測。比如:決策樹、SVM等。

    ……

    最后,當回環(huán)出現(xiàn)以后,也不要急著就讓機器人停止運動,要繼續(xù)保持運動,多走重合的路,在已經(jīng)完成閉合的路徑上,進一步掃圖完善細節(jié)。

     回環(huán)檢測是什么意思

    繼續(xù)走重合之路,完善閉環(huán)細節(jié)

     

    關(guān)鍵字:回环检测,SLAM回环检测

    top